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Abstract
This paper presents an alternative solution to simultane-

ous localization and mapping (SLAM) problem by apply-
ing a fuzzy Kalman filter using pseudolinear process and
measurement models. Takagi-Sugeno (T-S) fuzzy model
based on observation for nonlinear system is adopted to
represent the process and measurement models of the
vehicle-landmarks system. Using the Kalman filter the-
ory, each local T-S model is filtered to find the local es-
timates. The linear combination of these local estimates
gives the global estimate for the complete system. The
simulation results prove that the new approach results in
more anticipated performances, though nonlinearity is di-
rectly involved in the Kalman filter equations, compared to
the conventional approach.

1 Introduction

The simultaneous localization and mapping (SLAM) [1]
problem, also known as concurrent mapping and localiza-
tion (CML) problem, is often recognized in the robotics
literature as one of the key challenges in building au-
tonomous capabilities for mobile vehicles. The goal of an
autonomous vehicle performing SLAM is to start from an
unknown location in an unknown environment and build
a map (consisting of environmental features) of its envi-
ronment incrementally by using the uncertain information
extracted from it sensors, whilst simultaneously using that
map to localize itself with respect to a reference coordinate
frame and navigate in real time.

The first solution to the SLAM problem was proposed
by Smith et al. [2]. They emphasized the importance of
map and vehicle correlations in SLAM and introduced the
extended Kalman filter (EKF)-based stochastic mapping
framework, which estimated the vehicle pose and the map
feature (landmark) positions in an augmented state vec-
tor using second order statistics. Although the EKF-based
SLAM within the stochastic mapping framework gained

wide popularity among the SLAM research community.
Over time, it was shown to have several shortcomings. No-
table shortcomings are its susceptibility to data-association
errors and inconsistent treatment of nonlinearities.

Here we propose some remedies to overcome the short-
comings of the EKF algorithm. To preserve the nonlinear-
ity in the system, motion and observation models are rep-
resented by the pseudolinear models. Discrete time motion
model is derived from the dead-reckoned measurements of
the vehicle pose as to reduce the error associated with the
control inputs. This assures the less error prone motion
model producing faster convergence. We draw the supe-
riority of fuzzy Kalman filtering for the state estimation
through the SLAM algorithm developed with T-S fuzzy
model in this paper. The proposed T-S fuzzy model based
algorithm to the SLAM problem has proven that a demand-
ing (not conventional) solution to the SLAM problem ex-
ists and it overcomes limitations of the EKF based SLAM,
hinting a new path explored is much suitable in finding an
advanced solution to localization and mapping problems.

2 Pseudolinear System Modeling

In the following, the vehicle state is defined by x v =

[x, y, φ]T, where x and y are the coordinates of the center of
the rear axel of the vehicle with respect to some global co-
ordinate frame and φ is the orientation of the vehicle axis.
The landmarks are modeled as point landmarks and rep-
resented by a Cartesian pair such that mi = [xi, yi]T, i =
1, ...,N. Both vehicle and landmark states are registered in
the same frame of reference.

2.1 The Pseudolinear Process Model

Figure 4 shows a schematic diagram of the vehicle in the
process of observing a landmark. The pseudolinear vehicle
process model in discrete time can be expressed as follows:

xv(k + 1) = xv(k) + Bv(k)uv(k) (1)
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Figure 1: Vehicle in process of observing a landmark

for use in the prediction stage of the vehicle state estimator.
The landmarks in the environment are assumed to be

stationary point targets. The landmark process model is
thus [

xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
(2)

for all landmarks i = 1, ...,N. Equation (1) together with
Eq. (2) defines the vehicle-landmarks process model.

2.2 The Observation Model with Two Sensors

Range ri(k) and two bearing measurements θ i
1(k) and

θi
2(k) to landmark i are recorded by the range and bearing

sensors. The range measurements and bearing measure-
ments are taken from the center of rear vehicle axel where
the vehicle position (x, y) is taken. One sensor starts read-
ing measurements from the x axis and the other from the
center axis of the vehicle. Referring to Fig. 4, the observa-
tion model for ith landmark z i(k) = [ri(k), θi(k), βi(k)]T can
be written in a direct form as

ri(k) =
√

(xi − x(k))2 + (yi − y(k))2 + vr(k) (3)

θi(k) = θi
1(k) = arctan

(
yi − y(k)
xi − x(k)

)
+ vθ1 (k) (4)

θi
2(k) = arctan

(
yi − y(k)
xi − x(k)

)
− φ(k) + vθ2 (k) (5)

βi(k) = θi
1(k) − θi

2(k) = φ(k) + vθ1 (k) − vθ2(k) (6)

where vr and vθ are the white noise sequences associated
with the range and bearing measurements with zero means

and standard deviations σr and σθ respectively. Equa-
tions (3), (5) and (6) define the observation model for the
ith landmark.

2.3 Pseudolinear Observation Model

In this section, we present the pseudolinear measure-
ment model. The pseudomeasurement method relies on
representing the nonlinear measurement model (Eqs. (3),
(5) and (6)) in the following pseudolinear form:

y(z) = H(z)x + vy(x, v) (7)

Equations (3), (5) and (6) can be rearranged by algebraic
and trigonometric manipulations to obtain the following
model expressed by

ri(k) = (xi − x(k))cos(θi(k)) + (yi − y(k))sin(θi(k)) + vr(k)

0 = (xi− x(k))sin(θi(k))− (yi−y(k))cos(θi(k))+ri,true(k)vθ(k)

βi(k) = φ(k) + vθ1 (k) − vθ2(k) (8)

The model (8) composed of above three equations can be
expressed in the following pseudolinear form for the ith
landmark:

y(zi) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ri(k)

0
βi(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = H(zi)x + vyi(x, v) (9)

where the state vector is to be x = [xT
v mT

i · · ·mT
N]T and

vy(x, v) is considered to be white with its covariance ex-
pressed in the form:

Ry(x̂) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

r 0 0
0 r̂2

i σ
2
θ 0

0 0 σ2
β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

3 Formulation of Fuzzy Algorithm in SLAM
Problem

To reduce the computational cost in using the T-S fuzzy
model in SLAM problem, fuzzification of the process
model and the pseudolinear measurement model is split
into two cases according to the vehicle azimuth angle. A
set of fuzzy rules is constructed for each case and is ex-
ecuted based on the initial separation of vehicle azimuth
angle.
Case 1: If the azimuth angle of the vehicle (φ(t)) lies be-
tween −π/2 and π/2, the jth rule for this case will be of the
form:
Local linear system rule j:
IF φ(t) is F j

φ and θi(t) is F j
θ THEN

x j(k + 1) = x(k) + B j(k)u(k) for j = 1, 2, · · · , 8
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yi j(k + 1) = Hi j(k + 1)x j(k + 1) + vi
y j(k + 1) (11)

F j
φ, F

j
θ are the fuzzy sets of vehicle azimuth angel and bear-

ing angle for the jth rule respectively.
Case 2: It is defined for π/2 < |φ(t)| < π and will be com-
posed of eight similar local linear models as defined above.
The fuzzy Kalman filter (FKF) algorithm proceeds recur-
sively in the three stages:

• Prediction:
The algorithm first generates a prediction for the state
estimate, the observation (relative to the ith landmark)
and the state estimate covariance at the time k + 1 for
the jth rule according to

x̂ j(k + 1|k) = x̂(k|k) + B j(k)u(k) (12)

ŷi j(k + 1|k) = Hi j(k + 1)x̂ j(k + 1|k) (13)

P j(k + 1|k) = P(k|k) + B j(k)Q(k)BT
j (k) (14)

• Observation:
Following the prediction, the observation y i(k + 1) of
the ith landmark of the true state x(k + 1) is made ac-
cording to Eq. (9). Assuming correct landmark asso-
ciation, an innovation is calculated for the jth rule as
follows:

νi j(k + 1) = yi j(k + 1) − ŷi j(k + 1|k) (15)

together with an associated innovation covariance ma-
trix for the jth rule given by

Si j(k + 1) = Hi j(k + 1)P j(k + 1|k)HT
i j(k + 1)

+Ri j(k + 1) (16)

• Update:
The state update and corresponding state estimate co-
variance are then updated for the jth rule according
to

x̂ j(k+1|k+1) = x̂ j(k+1|k)+K j(k+1)νi j(k+1) (17)

P j(k + 1|k + 1) = P j(k + 1|k) − K j(k + 1)Si j(k + 1)

×KT
j (k + 1) (18)

Here the gain matrix K j(k + 1) is given by

K j(k + 1) = P j(k + 1|k)HT
i j(k + 1)S−1

i j (k + 1) (19)

Local state estimates are then combined to obtain the global
state estimate for the T-S fuzzy model given by Eq. (11).
The global estimate is then obtained by the following equa-
tion:

x̂(k + 1|k + 1) =
8∑

j=1
h j(zi(k))x̂ j(k + 1|k + 1) (20)
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Figure 2: Innovation in measurements

where zi(k) = [zi1(k) zi2(k)] = [φ(k) θi(k)]. The common
covariance can be formulated as follows:

P(k + 1|k + 1) = min(trace (P j(k + 1|k + 1))) ∀ j (21)

4 Simulation Results

The newly proposed method is applied to the feature
based SLAM. The developed algorithm was simulated for
the system composed of Eqs. (1), (2) and (9). An environ-
ment populated with point landmarks was simulated with
the FKF algorithm to generate the state estimates and state
errors. Simulation results are depicted in Fig. 2, Fig. 3 and
Fig. 4. Innovations are the only available measure to ex-
amine online filter behavior when true state values are un-
available. Innovations here (see Fig. 2) indicate that the
proposed filter and the models are consistent. Figure 3
shows localization of the vehicle and map building simul-
taneously over time. Figure 3(a) shows the estimated map
built over time. It can be seen that error ellipses of the fea-
tures are getting converged to actual landmark locations. It
is clear that the newly proposed algorithm can well map
the environment. Figure 3(b) shows standard deviation and
error associated with the vehicle pose. It can be seen that
the vehicle localization is performed well by the newly pre-
sented method as vehicle pose error is decreasing to a min-
imum bound gradually. Figure 4(a) shows the evolution
of the landmark uncertainty and it can be observed that
the landmark uncertainty is gradually decreasing over time.
Figure 4(b) shows the evolution of landmark state error and
it is once proved that the proposed method works well in
SLAM problem. It is observed that the landmark state er-
ror obtained from the pseudolinear model based FKF ap-
proach reaches to a minimum bound within a shorter time
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Figure 3: Simultaneous localization and map building
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Figure 4: Evolution of landmark state covariance and error

steps compared to that obtained from the EKF algorithm.
Note that the results obtained from the EKF-based SLAM
are not shown in this paper due to space limitations.

5 Conclusion

A fuzzy logic and pseudolinear model based solution
to the SLAM problem was first proposed in this paper
and validity of the method was proved with simulation re-
sults. The need for direct linearization of nonlinear systems
for state estimation is diminished as the newly proposed
method performed well and provided a better solution to
the SLAM problem. Results obtained from the newly in-
troduced method were compared with the results obtained
from widely used EKF algorithm to highlight the merit
of the pseudolinear model based system with fuzzy logic.
It was proved that the pseudolinear model based fuzzy

Kalman filter algorithm provided more satisfactory results
over the EKF because the pseudolinear models did not lose
its nonlinearity when employed in the Kalman filter equa-
tions. It was found that a fuzzy logic based approach with
the pseudolinear models provided a remarkable solution to
state estimation process because fuzzy logic has been al-
ways standing for a better solution.
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